900 research outputs found

    DNA sequence evidence for speciation, paraphyly and a Mesozoic dispersal of cancellothyridid articulate brachiopods

    Get PDF
    Because the classification of extant and fossil articulate brachiopods is based largely upon shell characters observable in fossils, it identifies morphotaxa whose biological status can, in practice, best be inferred from estimates of genetic divergence. Allozyme polymorphism and restriction fragment length polymorphism of mitochondrial DNA (mtDNA RFLP) have been used to show that nuclear and mitochondrial genetic divergence between samples of the cancellothyridid brachiopods Terebratulina septentrionalis from Canada and T. retusa from Europe is compatible with biological speciation, but the genetic distances obtained were biased by methodological limitations. Here, we report estimates of divergence in 12S rDNA mitochondrial sequences within and between samples of these brachiopods. The sequence-based genetic distance between these samples (5.98-0.07% SE) is at least 10 times greater than within them and, since they also differ in a complex life-history trait, their species status is considered to be securely established. Divergence levels between 12S rDNA genes of three other cancellothyridids, T. unguicula from Alaska, T. crossei from near Japan, and Cancellothyris hedleyi from near Australia are higher than between the two North Atlantic species, and the mean nucleotide distance between all these cancellothyrids is similar to the mean distance between species of Littorina (Mollusca: Gastropoda). Sequences of both 12S and 16S genes from cancellothyridids and other short-looped brachiopod species show neither saturation nor lineage-specific rate differences and, when analysed with different outgroups, either separately or together, yield one unexpected, but well-supported, tree with Alaskan T. unguicula basal and C. hedleyi nested within Terebratulina, i.e. these genera are paraphyletic. A geologically dated divergence between Antarctic and New Zealand species of the short-looped brachiopod Liothyrella is used to calibrate the rate of 12S divergence at ca. 0.1% per million years (MY), and this rate is used to infer that T. septentrionalis and T. retusa have been diverging for ca. 60 MY and that they and T. unguicula have been diverging from their last common ancestor for ca. 100 MY. This indicates a Mesozoic origin for the present-day distribution of cancellothyridids and the basal position of T. unguicula suggests a possible North Pacific centre of origin, with separate Atlantic and Pacific radiations. The inclusion of Cancellothyris within Terebratulina also shows that adult shell characters such as umbo, foramen and symphytium shape, whilst probably indispensible for the practical classification of fossils, are not reliable guides to genealogy

    Molecular evidence that phoronids are a subtaxon of brachiopods (Brachiopoda: Phoronata) and that genetic divergence of metazoan phyla began long before the early Cambrian

    Get PDF
    Concatenated SSU (18S) and partial LSU (28S) sequences (~2 kb) from 12 ingroup taxa, comprising 2 phoronids, 2 members of each of the craniid, discinid, and lingulid inarticulate brachiopod lineages, and 4 rhynchonellate, articulate brachiopods (2 rhynchonellides, 1 terebratulide and 1 terebratellide) were aligned with homologous sequences from 6 protostome, deuterostome and sponge outgroups (3964 sites). Regions of potentially ambiguous alignment were removed, and the resulting data (3275 sites, of which 377 were parsimony-informative and 635 variable) were analysed by parsimony, and by maximum and Bayesian likelihood using objectively selected models. There was no base composition heterogeneity. Relative rate tests led to the exclusion (from most analyses) of the more distant outgroups, with retention of the closer pectinid and polyplacophoran (chiton). Parsimony and likelihood bootstrap and Bayesian clade support values were generally high, but only likelihood analyses recovered all brachiopod indicator clades designated a priori. All analyses confirmed the monophyly of (brachiopods+phoronids) and identified phoronids as the sister-group of the three inarticulate brachiopod lineages. Consequently, a revised Linnean classification is proposed in which the subphylum Linguliformea comprises three classes: Lingulata, ‘Phoronata’ (the phoronids), and ‘Craniata’ (the current subphylum Craniiformea). Divergence times of all nodes were estimated by regression from node depths in non-parametrically rate-smoothed and other chronograms, calibrated against palaeontological data, with probable errors not less than 50 My. Only three predicted brachiopod divergence times disagree with palaeontological ages by more than the probable error, and a reasonable explanation exists for at least two. Pruning long-branched ingroups made scant difference to predicted divergence time estimates. The palaeontological age calibration and the existence of Lower Cambrian fossils of both main brachiopod clades together indicate that initial genetic divergence between brachiopod and molluscan (chiton) lineages occurred well before the Lower Cambrian, suggesting that much divergence between metazoan phyla took place in the Proterozoic

    Molecular evolution and morphological speciation in North Atlantic brachiopods (Terebratulina spp.)

    Get PDF
    Morphological and molecular differentiation of western and eastern North Atlantic brachiopods were examined by morphometric analysis of six shell characteristics (<i>n</i>= 144), allozyme electrophoresis at six nuclear gene loci (<i>n</i>= 485), and estimation of nucleotide difference by digestion of mitochondrial DNA (mtDNA) with nine restriction endonucleases (<i>n</i>= 96)

    The brachiopod fold: a neglected body plan hypothesis

    Get PDF
    Attention is drawn to Nielsen's radical body plan concept, here named the 'brachiopod fold hypothesis', under which brachiopods and phoronids are recognized to be transversely folded across the ontogenetic anterior–posterior axis so that, to make useful comparisons with other phyla, these organisms must be conceptually unfolded. Under the hypothesis brachiopod brachial and pedicle shell valves are respectively 'anterior' and 'posterior' rather than 'dorsal' and 'ventral' as traditionally described. The hypothesis makes sense of the symmetry axes of the brachiopod shell, is consistent with various indications from fossil and Recent brachiopods, and gives rise to predicted patterns of axis–determining gene expression that differ from those obtaining under the traditional view of the body plan, whilst the variety of folding movements in different lineages implies that superficially dissimilar morphogenetic folds may be fundamentally homologous. Convergent folding patterns are noted in some other organisms. A previous conjecture that inarticulate linguloid brachiopods were derived from halkieriid–like ancestors is elaborated with proposals that recognize possible functional continuities of coelomic and marginal sclerite functions, and it is noted that an ancestrally facultative fold could have become incorporated by genetic assimilation into the brachiopod developmental program. An experimental approach is outlined to test the possibility that some members of the 'small shelly fauna' may have been members of the halkieriid–like brachiopod stem lineage and it is also suggested that buoyancy modification may have been an important function of mineralization amongst Lower Cambrian floaters and swimmers, since negative buoyancy would facilitate access to the benthic niche

    Crinoid phylogeny: a preliminary analysis (Echinodermata: Crinoidea)

    Get PDF
    We describe the first molecular and morphological analysis of extant crinoid high-level inter-relationships. Nuclear and mitochondrial gene sequences and a cladistically coded matrix of 30 morphological characters are presented, and analysed by phylogenetic methods. The molecular data were compiled from concatenated nuclear-encoded 18S rDNA, internal transcribed spacer 1, 5.8S rDNA, and internal transcribed spacer 2, together with part of mitochondrial 16S rDNA, and comprised 3,593 sites, of which 313 were parsimony-informative. The molecular and morphological analyses include data from the bourgueticrinid Bathycrinus; the antedonid comatulids Dorometra and Florometra; the cyrtocrinids Cyathidium, Gymnocrinus, and Holopus; the isocrinids Endoxocrinus, and two species of Metacrinus; as well as from Guillecrinus and Caledonicrinus, whose ordinal relationships are uncertain, together with morphological data from Proisocrinus. Because the molecular data include indel-rich regions, special attention was given to alignment procedure, and it was found that relatively low, gene-specific, gap penalties gave alignments from which congruent phylogenetic information was obtained from both well-aligned, indel-poor and potentially misaligned, indel-rich regions. The different sequence data partitions also gave essentially congruent results. The overall direction of evolution in the gene trees remains uncertain: an asteroid outgroup places the root on the branch adjacent to the slowly evolving isocrinids (consistent with palaeontological order of first appearances), but maximum likelihood analysis with a molecular clock places it elsewhere. Despite lineage-specific rate differences, the clock model was not excluded by a likelihood ratio test. Morphological analyses were unrooted. All analyses identified three clades, two of them generally well-supported. One well-supported clade (BCG) unites Bathycrinus and Guillecrinus with the representative (chimaeric) comatulid in a derived position, suggesting that comatulids originated from a sessile, stalked ancestor. In this connection it is noted that because the comatulid centrodorsal ossicle originates ontogenetically from the column, it is not strictly correct to describe comatulids as unstalked crinoids. A second, uniformly well-supported clade contains members of the Isocrinida, while the third clade contains Gymnocrinus, a well-established member of the Cyrtocrinida, together with the problematic taxon Caledonicrinus, currently classified as a bourgueticrinid. Another cyrtocrinid, Holopus, joins this clade with only weak molecular, but strong morphological support. In one morphological analysis Proisocrinus is weakly attached to the isocrinid clade. Only an unusual, divergent 18S rDNA sequence was obtained from the morphologically strange cyrtocrinid Cyathidium. Although not analysed in detail, features of this sequence suggested that it may be a PCR artefact, so that the apparently basal position of this taxon requires confirmation. If not an artefact, Cyathidium either diverged from the crinoid stem much earlier than has been recognised hitherto (i.e., it may be a Palaeozoic relic), or it has an atypically high rate of molecular evolution

    Comparison of articulate brachiopod nuclear and mitochondrial gene trees leads to a clade-based redefinition of protostomes (Protostomozoa) and deuterostomes (Deuterostomozoa)

    Get PDF
    Nuclear and mtDNA sequences from selected short-looped terebratuloid (terebratulacean) articulate brachiopods yield congruent and genetically independent phylogenetic reconstructions by parsimony, neighbor-joining and maximum likelihood methods, suggesting that both sources of data are reliable guides to brachiopod species phylogeny. The present-day genealogical relationships and geographical distributions of the tested terebratuloid brachiopods are consistent with a tethyan dispersal and subsequent radiation. Concordance of nuclear and mitochondrial gene phylogenies reinforces previous indications that articulate brachiopods, inarticulate brachiopods, phoronids and ectoprocts cluster with other organisms generally regarded as protostomes. Since ontogeny and morphology in brachiopods, ectoprocts and phoronids depart in important respects from those features supposedly diagnostic of protostomes, this demonstrates that the operational definition of protostomy by the usual ontological characters must be misleading or unreliable. New, molecular, operational definitions are proposed to replace the traditional criteria for the recognition of protostomes and deuterostomes, and the clade-based terms 'Protostomozoa' and 'Deuterostomozoa' are proposed to replace the existing terms 'Protostomia' and 'Deuterostomia'

    Brachiopod molecular phylogeny

    Get PDF
    Analysis by parsimony, maximum likelihood and distance methods of newly determined nuclear-encoded SSU rRNA gene sequences from 23 species of articulate brachiopods, six inarticulate brachiopods, two phoronids and an ectoproct, together with other sequences from published and unpublished sources show that lophorates cluster with protostome, not deuterostome metazoa and the phoronids cluster with inarticulate brachiopods. Phoronids, inarticulate, and articulate brachiopods form a monophyletic assemblage. A chiton is the closest known out-group of brachiopods plus phoronids. With articulates, separate rhynchonellid and long and short-looped terebratulid clades are identified and a thecideidine falls within the short-looped articulate clade. Forms with incomplete loops belong either to the short or long-looped clades, thus, a three-fold division of articulate brachiopods suffices to encompass the range of extant diversity so far examined. A perfect correlation was found between clade rank and lineage age rank for five well-dated brachiopod lineages. The important underpinning role of classical brachiopod taxonomy for molecular phylogeny is stressed

    Dephasing at Low Temperatures

    Full text link
    We discuss the significance and the calculation of dephasing at low temperatures. The particle is moving diffusively due to a static disorder configuration, while the interference between classical paths is suppressed due to the interaction with a dynamical environment. At high temperatures we may use the `white noise approximation' (WNA), while at low temperatures we distinguish the contribution of `zero point fluctuations' (ZPF) from the `thermal noise contribution' (TNC). We study the limitations of the above semiclassical approach and suggest the required modifications. In particular we find that the ZPF contribution becomes irrelevant for thermal motion.Comment: 4 pages, 1 figure, clearer presentatio

    Persistent currents in Moebius strips

    Get PDF
    Relation between the geometry of a two-dimensional sample and its equilibrium physical properties is exemplified here for a system of non-interacting electrons on a Moebius strip. Dispersion relation for a clean sample is derived and its persistent current under moderate disorder is elucidated, using statistical analysis pertinent to a single sample experiment. The flux periodicity is found to be distinct from that in a cylindrical sample, and the essential role of disorder in the ability to experimentally identify a Moebius strip is pointed out.Comment: 5 pages, 4 figure

    Chiral multiplets versus parity doublets in highly excited baryons

    Get PDF
    It has recently been suggested that the parity doublet structure seen in the spectrum of highly excited baryons may be due to effective chiral restoration for these states. We argue how the idea of chiral symmetry restoration high in the spectrum is consistent with the concept of quark-hadron duality. If chiral symmetry is effectively restored for highly-lying states, then the baryons should fall into representations of SU(2)L×SU(2)RSU(2)_L\times SU(2)_R that are compatible with the given parity of the states - the parity-chiral multiplets. We classify all possible parity-chiral multiplets: (i) (1/2,0)(0,1/2)(1/2,0)\oplus(0, 1/2) that contain parity doublet for nucleon spectrum;(ii) (3/2,0)(0,3/2)(3/2,0) \oplus (0, 3/2) consists of the parity doublet for delta spectrum; (iii) (1/2,1)(1,1/2)(1/2,1) \oplus (1, 1/2) contains one parity doublet in the nucleon spectrum and one parity doublet in the delta spectrum of the same spin that are degenerate in mass. Here we show that the available spectroscopic data for nonstrange baryons in the \sim 2 GeV range is consistent with all possibilities, but the approximate degeneracy of parity doublets in nucleon and delta spectra support the latter possibility with excited baryons approximately falling into (1/2,1)(1,1/2)(1/2,1) \oplus (1, 1/2) representation of SU(2)_L\timesSU(2)_R with approximate degeneracy between positive and negative parity NN and Δ\Delta resonances of the same spin.Comment: RevTeX, 6 pages. The paper has been expanded in order to make the idea of chiral symmetry restoration as it follows from the concept of quark-hadron duality more transparent. To appear in Phys. Rev.
    corecore